Spatial and Temporal Trends of Dengue Fever Cases in Bukittinggi City: Utilizing GIS for Risk Mapping

Authors

  • Nurdin Universitas Fort De Kock Bukittinggi Author

Keywords:

Dengue, GIS, Public health, Risk mapping, Spatial analysis

Abstract

This study explores the spatial and temporal trends of Dengue Hemorrhagic Fever (DHF) cases in Bukittinggi City, employing Geographic Information Systems (GIS) for comprehensive risk mapping. The investigation spans from January 2015 to December 2019, analyzing DHF incidence data across various neighborhoods and age groups. The findings reveal a distinct seasonal pattern, with notable peaks during specific months, and identify significant age-related and spatial disparities in case distribution. The application of GIS technology has enabled the visualization of high-risk areas and the identification of potential clusters of DHF cases, facilitating targeted public health interventions. The research underscores the critical need for continuous monitoring and strategic resource allocation to mitigate DHF outbreaks in identified high-risk zones. The insights gained through this study provide a valuable basis for enhancing public health strategies and improving the allocation of preventive measures. 

References

Ai-leen, G. T., & Song, R. J. (2000). The use of GIS in ovitrap monitoring for dengue control. American Journal of Tropical Medicine and Hygiene, 62, 727-734. https://doi.org/10.4269/ajtmh.2000.62.727

Cao, Z., Liu, T., Li, X., Wang, J., Lin, H., Chen, L., Wu, Z., & Ma, W. (2017). Individual and interactive effects of socio-ecological factors on dengue fever at fine spatial scale: A geographical detector-based analysis. International Journal of Environmental Research and Public Health, 14(7), 795. https://doi.org/10.3390/ijerph14070795

Indaratna, K., Hutubessy, R., Chupraphawan, S., Sukapurana, C., & Tao, J. (1998). Application of geographical information systems to co-analysis of disease and economic resources: dengue and malaria in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 29, 669-684.

Liu, H., Zhu, G., Tan, Q., Shi, B., & Scarpino, S. V. (2016). Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLOS Neglected Tropical Diseases, 10(4), e0004633. https://doi.org/10.1371/journal.pntd.0004633

Morrison, A. C., Getis, A., Santiago, M., Rigau-Perez, J. G., & Reiter, P. (1998). Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. American Journal of Tropical Medicine and Hygiene, 58, 287–298. https://doi.org/10.4269/ajtmh.1998.58.287

Rodriguez, M., & Perez, D. (2011). Spatio-temporal distribution of dengue in Cuba, 1981–2000. Cadernos de Saúde Pública, 27, 1917-1930. https://doi.org/10.1590/s0102-311x2011001000004

Ryan, S. J., Carlson, C. J., Mordecai, E. A., & Johnson, L. R. (2019). Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLOS Neglected Tropical Diseases, 13(7), e0007213. https://doi.org/10.1371/journal.pntd.0007213

Teurlai, M., Huy, R., Cazelles, B., Duboz, R., & Lorn, T. (2012). Can human movements explain heterogeneous propagation of dengue fever in Cambodia?. PLOS ONE, 7(12), e49336. https://doi.org/10.1371/journal.pone.0049336

Wang, P., Wang, H., Yu, J., Xie, Q., Yao, Z., Qin, Z., Lu, W., Li, J., Zhang, M., Cao, G., Zhong, Z., He, T., Ma, D., Zhang, B., & Zhao, W. (2016). Molecular characterization and phylogenetic analysis of dengue virus type 1 in Guangdong in 2014. SpringerPlus, 5(1), 1479. https://doi.org/10.1186/s40064-016-3175-5

Wang, P. G., Goggins, W. B., Chan, E. Y. Y., & deCastro, M. (2016). Hand, foot and mouth disease in Hong Kong: A time-series analysis on its relationship with weather. PLOS ONE, 11(8), e0161006. https://doi.org/10.1371/journal.pone.0161006

Wang, S., Ling, F., & Li, W. (2020). The influence of weather on dengue transmission in Guangzhou, southern China. Environmental Health, 19, 47. https://doi.org/10.1186/s12940-020-00604-w

Xiao, J., Xu, C., & Jiang, Y. (2018). Spatio-temporal analysis of dengue fever in Hainan Province, China. BMC Public Health, 18, 193. https://doi.org/10.1186/s12889-018-5106-3

Zhang, J., Yang, Y., & Lu, L. (2014). A probabilistic spatial dengue fever risk assessment by a threshold-based-quantile regression method. PLOS ONE, 9(8), e106334. https://doi.org/10.1371/journal.pone.0106334

Zhu, G., Liu, J., Tan, Q., Shi, B., & Scarpino, S. V. (2016). Inferring the spatio-temporal patterns of dengue transmission from surveillance data in Guangzhou, China. PLOS Neglected Tropical Diseases, 10(4), e0004633. https://doi.org/10.1371/journal.pntd.0004633

Zomahoun, D. J., Massougbodji, A., & Alagninouwa, A. (2021). Risk mapping of dengue fever outbreaks in Sub-Saharan Africa. PLoS Neglected Tropical Diseases, 15(10), e0009875. https://doi.org/10.1371/journal.pntd.0009875

Downloads

Published

2024-12-16